A Systems Engineering Approach to Spacecraft Trajectory Optimisation

George Coulloupas
Dr Hideaki Ogawa

School of Engineering

CubeSat 2017
UNSW Sydney, Australia
Thursday 20 April
Overview

1. Introduction
2. Research Objectives & Motivations
3. Approach
4. Methodology – Overview
5. Results – ASRC 2016
6. Research Output
7. Conclusions
8. Future Work
9. Questions

Speakers Bio

• RMIT School of Engineering
 – B.Eng(Hons)(Sustainable Systems Eng)
 – Student of PhD (Aerospace Engineering)

• Aerospace Systems Pty Ltd
 – Managing Director

george.coulloupas@rmit.edu.au
george@aerospacesystems.com.au
Introduction

• Presenting a Systems Engineering (SE) approach in response to:
 – Global and rising use of miniaturised spacecraft
 – Availability of high fidelity software suites
 – Mitigate risks with space environment operations

• Motivated to objectively assist and benefit
 – Research organisations with scarce space engineering experience
 – Space industry development (SME’s)
Research Objectives & Motivations

• Miniatu...
Constellation Design Framework
Methodology – Conceptual Mission Architecture

- Specialised launch vehicle service; 12 co-planar miniaturised satellites
Constellation Design Framework
Methodology - Overview

• Automated process chain (originally developed at UNSW Canberra)
Constellation Design Framework
Methodology – *Evolutionary Algorithms*

- **MATLAB**

Evolutionary Algorithms

Decision variables
\{*Cluster initial state, Manoeuvres*\}

- **Evolutionary algorithms**
 - Elitist real-coded genetic algorithm inspired by biological evolution
 - A population with \(N\) individuals evolves for \(G\) generations via:
 - crossover
 - selection
 - reproduction
 - mutation

RMIT University © 2016

Coulloupas, Ogawa

george.coulloupas@rmit.edu.au
Scenario Initialization

- Systems Tool-Kit MATLAB Application Programming Interface

- Decision Variables
 - Initial State (Keplerian, or other elements)
 \[Orbital \ State = \{ n, i, e, \Omega, u \}, \ Epoch \]
 - Spacecraft Parameters
 \[Dry \ Mass, C_D, C_R, C_K, Exposed \ Areas \]
 - Manoeuvre requirements (to achieve desired state)
 \[\Delta H_1, \ldots, \Delta H_{11} \] (Reference satellite does not perform a manoeuvre)
Constellation Design Framework
Methodology – Numerical integration

- High Precision Orbit Propagation (HPOP)

- Mission architecture
 - Mission Control Sequence (MCS) graphically programmed
 - Converges on objectives (Delta V) according to:
 - HPOP capabilities
 - Atmospheric Model (F10.7): MSISE
 - Solar Radiation Pressure: Spherical SRP
 - Geopotential Model: WGS84EGM96
 - Third-body Model: Gravity Fields
 - Numerical Integration & Error Control: Upto 9th order Runge-Kutta-Verna with 8th order error control
Constellation Design Framework
Methodology – Post Processing

• MATLAB Programming Interface

• Solution
 – Objective Function
 \[f_1 = \min \left(\sum_{i=1}^{12} |\Delta V_{x,y,z}| \right) \text{ [km/s]} \] (1)
 – Objective Function
 \[f_2 = \min \left(\max (\Delta t_{phase}) \right) \text{ [s]} \] (2)
 – Objective Function
 \[f_3 = \min (E_{Ref}) \text{ [rads]} \] (3)
 – Constraint Functions
• Surrogate modelling
 – In-lieu of computationally demanding numerical integration
 – Predicts objective functions for given input parameters
 – Response surface models
 – Radial basis functions (Artificial Neural Network)
 – Kriging approximation if:
 – Prediction error (Sq. Mean Error) < 5 %
 (best performing surrogate chosen)
Constellation Design

Results – *Double Transfer Co-Planar Phase*

J2 Perturbations

- Generation = 50

<table>
<thead>
<tr>
<th>HPOP Candidate</th>
<th>Delta V</th>
<th>Time</th>
<th>Rads</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.47 km/s</td>
<td>~70 hrs</td>
<td>~0.03</td>
</tr>
</tbody>
</table>

HPOP model

- Generation = 30
• Mean motion (Altitude) most pronounced effect on Delta-V and Radiation Dose

• Eccentricity most pronounced effect on phasing time, 2nd most on Rad Dose

• Varying Delta-H affects phasing time more so than Delta V
Research Output
RASC-AL 2016 & RASC-AL 2017

• Revolutionary Aerospace Systems Concepts – Academic Linkage
 – Full-scale space mission architecture design competition
 – Presenting ‘ELITE’ in Florida, May 2017
Research Output

GTOC 9

- European Space Agency - Global Trajectory Optimization Competition 9
 - Catastrophic LEO debris scenario
 - Highly constrained design space
Research Output

- MDO of Mini Cusped Field Thruster
 - ASRC 2016 (Muffatti & Ogawa)

- Multi-objective Trajectory & Control Optimisation for Multi-Asset Deployment
 - Rocket-Based Combined Cycle (RBCC) Two-Stage-to-Orbit Launch Vehicle AIAA 2014 (Ogawa)
Future Work (Cont.)

- Multi-asset, multi-plane orbital strategies – 31 ISTS (Japan)
 - RAAN Phasing by J2 perturbations
 - Utilizing optimal CFT model derived by Muffatti & Ogawa
- Uncertainty Quantification (UQ) – IAC 2017
 - Multiple simulators
 - Many modelling inputs

UQ Framework

- Scenario initialization
- Mission architecture
- Multiple Simulators
- Solution
- Post processing
- Decision variables
- Surrogate-assisted EA
- Evaluated objectives
Acknowledgements

We are grateful to the MDO Group at the UNSW Canberra for the development of the original MDO Framework.