FluroSat

Launching the next Green Revolution

FluroSat Business Presentation
Our purpose

We combine hyperspectral aerial and satellite imagery with farm observations to diagnose and monitor crops to

 Inform decisions.

 Reduce input costs.

 Get higher yields.

 Feed the world.
How we started

“Inventing the Future”

Pilot Inter-Faculty Enterprise Course

... The challenge in this theme is to identify and prototype an application for nano-satellites that would benefit remote communities. The benefit could relate to local industry (agriculture, mining), education or to provide improved communications infrastructure, or any other application.

The University of Sydney has an existing program in nano-satellites, through the i-Inspire program.

University experts: Professor Iver Cairns, Dr Xiaofeng Wu; SpaceNet group.
Problems in agriculture

Daily decision made on farms are

not informed (~95%)

reactive

This leads to non-optimal and unsustainable farming practices
Problems with Remote Sensing

FluroSat Business Presentation
Power of Hyperspectral Imaging

Spectral signature of tea grown under various management practices.
FluroSat Solution

Monitoring system that works with and for better farming

Satellite and aerial imagery, farm information

FluroSat Ag Engine

Crop health analytics

Better decisions, higher returns
Competition

<table>
<thead>
<tr>
<th></th>
<th>FluroSat</th>
<th>GAMAYA</th>
<th>AIRINOV</th>
<th>Hummingbird Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensors</td>
<td>multi-/ hyperspectral</td>
<td>hyperspectral</td>
<td>multispectral</td>
<td>multispectral</td>
</tr>
<tr>
<td>Products</td>
<td>imagery and analytics</td>
<td>sensors and analytics</td>
<td>hardware and analytics</td>
<td>imagery and analytics</td>
</tr>
<tr>
<td>Crops types</td>
<td>wheat, cotton, sugar cane</td>
<td>soy, sugar cane, corn</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Markets</td>
<td>AU, US</td>
<td>EU, Brazil</td>
<td>EU</td>
<td>UK</td>
</tr>
</tbody>
</table>

- First mover advantage
- Unique IP and local datasets
- Exclusive partnerships and trials
Data Processing and Delivery

Remote sensing imagery is taken by precise hyperspectral cameras onboard drones or satellites.

Hyperspectral analysis specific to your crop type helps estimate crop performance and diagnose it.

Crop stressors and deficiencies are identified: nutrient deficit, water and heat stress, weeds and diseases.

FluroSat Business Presentation
Product to date

Data-driven model-based crop management tool to

- estimate nitrogen status of the crop
- (detect disease and weeds)
- (differentiate water/heat stress)
Business Model

1. Agronomy firms or a grower collect data.
2. FluroSat acquires additional data.
3. Model-based analysis identifies crop stressors.
4. Crop yield potential is monitored.
5. Recommendation on inputs are made.
Us

Management team

Anastasia Volkova, PhD ’18
Aeronautics and remote sensing
CEO

Aleksey Achkasov
Web system development
CTO

Malcolm Ramsay, PhD ’19
Data analysis and modelling
CSO

Advisory Board

Petra Andrén

Tim Parsons

Bronwyn Darlington

Industry Partners

Australian Government
Cotton Research and Development Corporation

GRDC
Grains Research & Development Corporation

LANDMARK

McGregor Gourlay
Invent the future of agriculture with us!

Expert advice
Funding
Partnerships

hello@flurosat.com