The Advanced Instrumentation and Technology Centre (AITC)

ACSER CUBESAT2017: Launching CubeSats for and from Australia
19th-20th April 2017

QB50 Test Campaign and CubeSat testing at the AITC

Mike Petkovic – AITC Test Facilities Manager
Research School of Astronomy and Astrophysics
Advanced Instrumentation and Technology Centre (AITC)

• National facility for the design, manufacture, assembly and test of precision instrumentation
• Suite of integration laboratories, cleanrooms, and environmental test facilities
• Staffed by personnel with significant instrumentation and space experience and expertise
Advanced Instrumentation and Technology Centre (AITC)

- Can provide technical support for all phases of CubeSat development cycle
- One-stop-shop for the AIT of both terrestrial and spaceborne instrumentation and small spacecraft
- A unique hands-on facility for AIT training.
- Spacecraft test team involvement encouraged
AITC Environmental Test Facilities

- EMC
- Vibration
- PyroShock
- Thermal Cycling
- Thermal-Vacuum
- Mass Properties
- EP Thruster Vacuum
- Mechanical Shock
AITC On-Site Test Support Facilities

- Electronics lab, general test & rework equipment
- Optical test & metrology equipment
- Full machine shop (modifications, jigs & fixtures)
- 3D printing capability (ABS and vacuum-compatible)
- Cleanrooms & clean work stations
- Adhesive preparation equipment
- Gross & precision cleaning facility
- Plasma processing facility
Australian QB50 Spacecraft

QB50-AU01
SUSat

QB50-AU02
UNSW-EC0

QB50-AU03
Inspire-2
Australian QB50 Spacecraft Testing

• Concurrent test campaign: AU01, AU02, AU03
• Undertaken over a 2-week period in late June 2016
 – ~5-days spacecraft test preparation
 – ~7-days testing
• QB50 flight acceptance tests:
 – Vacuum-bakeout;
 – Thermal-Vacuum cycling;
 – Vibration (Sine, QSL & RMV);
 – Pyroshock (deleted – waiver granted)
QB50 Thermal-Vacuum (TVAC) Tests

- All three spacecraft accommodated in S2F
 - Vacuum bakeout followed by 4-cycles +50/-20°C
 - Thermal cycling undertaken on 12-hour/day basis; paused at ambient
 - Free-space RF communications with AU01 (very low power)
 - GPS retransmission within chamber

- All tests successfully completed!
QB50 Thermal-Vacuum (TVAC) Tests

• Minor issues encountered and overcome
 – new TVAC test fixture – AU03 antenna deployment
 – RF communications with spacecraft
 – location of test temperature sensors
 – definition of when dwell starts/finishes
 – battery charging during cycling
 – battery power available for functional tests
 – GPS signals in test area and chamber
 – mechanism deployment at low-temperatures

• QB50 lessons-learned applicable to all testing
QB50 Vibration Tests

- ISIS 2U test pod (baseline) use had issues
- AU03 Z-axis testing completed OK
- Large resonance peak detected during initial sine sweep, X-axis
QB50 Vibration Tests

- Remaining tests completed with CalPoly test pod
- Shift in resonant peaks (CalPoly test pod) explained to launch provider
- 3 different RMV profiles were used across the three spacecraft (late requirements change)
Test Campaign Optimisation

• Test campaigns are expensive (costs underestimated)
 – test facility charges
 – test campaign logistics (travel, accommodation, subsistence)

• Efficient, effective & thorough planning will maximise success & minimise cost

• Start environmental test planning early - talk to us well before your test is due
 – understand test requirements (development or launch authority mandated)
 – advise us of your needs (required test(s) & window)
 – discuss AITC facility capabilities, interfaces & services
 – agree on a test baseline (test, ROM cost & schedule, window)
Reason for test

• Launch authority requirement
 – minimum usual tests
 • vacuum bakeout
 • vibration (swept-sine and RMV)
 – other requirements
 • additional vibration tests (Sinusoidal, QSL)
 • TVAC cycling
 • PyroShock (avoid with waiver if possible)

• Development tests
 – engineering analysis and risk mitigation
 – testing more involved
Test Cost Drivers

- AITC services provided on a cost-recovery basis
- Test price is based on AITC engineering effort (and consumables)
- Test price discounted for approved university research projects
- Facility access fee for test team operation
- Test work scope can vary widely
 - each test may have unique & specific requirements
 - wide range of ROM test prices
Test Cost Drivers

• We will work with you
 – provide technical assistance and guidance
 – allow you access to facility on 24/7 basis
 – allow test team operation of some facilities (after training)
 – help you to keep your costs down

• Remember
 – scope creep and changes will impact on cost!
 – delays may also impact

• **Minimise AITC effort to minimise test cost!**
Engagement with the AITC

• AITC facilities, capabilities, test guides and ROM pricing to be available online soon
• Engage initially by completing test questionnaire
• Follow-up telecon with AITC to discuss needs
• ROM test price for baseline scope provided
• Testing to be undertaken under a test services agreement
 – fixed-price (agreed and fixed work scope)
 – test-capped (limit-of-liability) based on ROM
 – takes time to get through university processes
TVAC testing – factors to consider

• Test facility capability
 – S2F suited to larger spacecraft (deployed mechanisms)
 – TBAL testing & TVAC cycling
 – consider UNSW Canberra for bakeout and stowed (launch configuration) thermal cycling (up to 3U)

• Test duration
 – TVAC testing normally undertaken on a 24/7 basis
 – 12-hour/day possible – takes longer, no cost saving
 – typically 3-4 days to complete bakeout & cycling
 – spacecraft thermal stabilisation drives overall test duration (and price)
 – spacecraft representative available on-site at all times
TVAC testing – factors to consider

• Test criteria
 – definition of when hot/cold dwell starts/finishes critical
 – test temperature sensor locations (internal/external)
 – battery charging during cycling creates drift

• Test preparation
 – spacecraft sensor instrumentation
 – spacecraft integration into chamber & end-to-end test
 – maximum amount of hands-on to spacecraft test teams

• Test fixtures
 – support spacecraft with appendages/deployables
 – separation switch type and locations
 – special fixture may be required (AITC or user-provided)
TVAC testing – factors to consider

• **Spacecraft communication**
 – direct cable connection
 • umbilical cable to spacecraft test connector
 • vacuum compatible harness
 • Standard vacuum feedthrough connector
 – RF comms
 • S2F is a Faraday cage – cable feedthroughs required
 • issues with free-space communications inside chamber
 • direct connection (bypassed) antennas or load caps
 • ground station required
TVAC testing – factors to consider

• Spacecraft power
 – battery charging
 • battery temperatures critical
 • trickle charging takes a long time
 • impacts on thermal cycling (battery temp rising)
 • limited windows for charging (battery temperature)
 • may impact on spacecraft functional tests (deployments)
 – ground power
 • consider external power supply via umbilical
 • external switching between ground and on-board power
TVAC testing – factors to consider

• **Spacecraft functional tests**
 – full functional tests before TVAC testing
 – abbreviated functional tests under vacuum at end of dwell
 – strongly consider automated test scripts to minimise time
 – deployments should be undertaken at the end of cold phase (worst case)
 – ensure sufficient battery power for functional tests
 – GPS repeater (inside S2F & Integration Hall) required

• **Materials vacuum compatibility**
 – vacuum-compatible materials only
 – significant S2F decontamination charges may apply
Vibration testing – factors to consider

• Test duration
 – spacecraft functional testing & inspection drives overall test duration
 – basic testing can be completed within a day
 – complicated testing - allow 1-day/axis

• Test preparation
 – test profiles need to be (re-)qualified before flight test item
 – profile change will require additional AITC effort
 – spacecraft preparation includes CAC & spacecraft inspection
 – AITC will provide training & reasonable level of support during spacecraft preparation
 – maximum amount of hands-on to spacecraft test teams
Vibration testing – factors to consider

• Spacecraft functional testing
 – may be undertaken on-shaker
 – requires bypass of separation switches and access to test connector port
 – ideally test item should not be removed between vibration axes
 – functional testing will add to schedule

• Test sequence axis by axis
 – all vibration exposures completed in one axis before moving to next
 – swept sine resonance search between vibration exposures
 – off-shaker functional testing after all axis exposures completed
Vibration testing – factors to consider

• Test pods & fixtures
 – CalPoly 3U test pod
 • 1U, 2U & 3U "tuna can" test items
 • multiple test items possible
 • enables testing in all 3-axes on slip table
 • clearance between spacecraft and pod
 – QB50 (ISIS 2U) test pod
 • clamped rail retains test item
 • necessitates shaker reconfiguration for Y-axis
 – Other test pods & fixtures
 • will require shaker interfaces fixtures to be fabricated
 • can be user-provided or by AITC
Vibration testing – factors to consider

- Test instrumentation & data
 - Flight acceptance test
 - test data demonstrates required test exposure achieved
 - minimum sensors and data logging
 - test pod instrumented; spacecraft not
 - logged data can’t be used for analysis
 - Development/qualification test
 - spacecraft internally instrumented
 - multiple miniature sensors required
 - DAQ system & analysis software
 - logging & processing by test teams
Contact us

Advanced Instrumentation and Technology Centre
Mt Stromlo Observatory
www.rsaa.anu.edu.au
aitc@anu.edu.au
+61 2 6125 0247